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ABSTRACT 
Natural convection in a porous layer between two horizontal, concentric cylinders is investigated numerically 
by solving the 2-D Darcy-Boussinesq equations on a very fine grid. The parabolic-elliptic system was 
solved by a second order finite difference scheme based on the implicit alternating direction method coupled 
with successive under relaxation. The calculations show that for radius ratios above 1.7, the functional 
relationship between the mean Nusselt number and the RayJeigh number exhibits a closed hysteresis loop 
associated with the transition from a two to a four cell flow pattern. For very small radius ratios, steady 
state regimes containing 2,4, 6, and 8 cells are progressively obtained as the Rayleigh number is increased, 
but no hysteresis behaviour is observed. For a radius ratio of 2, the numerical results are in good agreement 
with the experimental data. Multi-cellular regimes and hysteresis loops have also been reported in the 
literature for fluid annuli but some differences between the two cases exist and are fully explained below. 

KEY WORDS Natural convection Cylindrical annulus Porous medium Multi-cellular flows Hysteresis Finite 
differences 

NOMENCLATURE 

g acceleration due to gravity, [m/s2] α coefficient of thermal expansion, [1/K] 
k permeability of the porous medium, [m2] ε porosity 
Nu mean Nusselt number λe thermal conductivityof the porous medium, 
Nut, Nuo Nusselt numbers at inner and outer cylinders [W/mK] 
r dimensionless radial coordinate μ fluid viscosity [kg/ms] 
R, Rt, Ro radius ratio, inner and outer cylinder radius θ tangential coordinate 
Ra Rayleigh number ρo fluid density at To [kg/m3] 
t dimensionless time (pc)f,(pc)s heat capacity per unit volume of fluid, solid, 
T dimensionless temperature (ρc)e porous medium, [J/m3 K] 
Tt To, Tm inner, outer and mean temperatures, [K] ψ dimensionless stream function 
vn vθ radial and tangential dimensionless velocity ω under-relaxation parameter 

components 

INTRODUCTION 

Natural convection between two horizontal concentric cylinders is of particular importance in 
a wide variety of applications such as aircraft fuselage insulation, underground electrical 
transmission wires and the flow in the cooling passages of turbine blades. The fluid layer problem 
has been considerably studied both theoretically and by experiment. The first experimental work 
seems to be due to Liu et al.1 who showed the existence of a multi-celular regime for relatively 
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small radius ratios (R= 1.5). Later, several experimental studies2-4 using various techniques for 
visualizing the temperature and flow fields (e.g. interferometry, tobacco smoke) showed the 
existence of different convective regimes including three dimensional effects located in the upper 
part of the layer. Mack and Bishop5 using a perturbation technique demonstrated the existence 
of secondary flows the upper and lower parts of the annulus for small Prandtl number fluids. 
More recent studies include the works of Powe et al.6,7, Kuehn and Goldstein8, and Rao et al9. 
The numerical work of Fant et al.10 showed that at fairly high Rayleigh numbers, thermal 
instability for air appears as steady counter-rotating cells near the top of the annulus, and that 
the same flow exhibits hysteresis behaviour for small gap widths. A similar hysteresis behaviour 
was also observed by Cheddadi et al.21 who solve the same equations in primitive variables using 
the artificial compressibility method to obtain the pressure field. The numerical results were in 
good agreement with their measurements of the tangential velocity component using laser-Dopper 
anemometry in an annual space filled with air. 

Results on the same geometry but for porous layers are less numerous. The first experimental 
data seems to be due to Caltagirone12,13 who visualized the thermal field using the Christiansen 
effect and obtained experimental Nusselt numbers based on temperature measurements by means 
of several thermocouples introduced in the porous layer. His observations showed that a 
fluctuating three dimensional regime can exist in the upper part of the annulus though the lower 
part remains strictly two-dimensional. The author used both a perturbation technique and a 
finite difference method to solve the two-dimensional Boussinesq equations but was unable to 
predict the instabilities observed experimentally. Only a local stability analysis using the Galerkin 
method succeeded in estimating a transitional Rayleigh number. A three-dimensional finite 
element simulation confirmed the existence of spiral, unsteady flows. Recently, the two-
dimensional finite difference equations have been solved14-16 on a very fine grid and the existence 
of multi-cellular flow regimes having an even number of cells between 2 and 9 inclusive, with 
the secondary cells located in the top part of the annulus has been reported for a porous layer. 

Here, the Darcy-Boussinesq two-dimensional equations are solved numerically on a very fine 
grid. For a given Rayleigh number, the calculations are started from results obtained either 'at 
the next lowest or next highest Rayleigh number. This procedure allows us to determine if 
multiple regimes are possible for given conditions. For a radius ratio of 2, the computed 
transitional Rayleigh number is in excellent agreement with the value obtained experimentally. 
As will be shown later, hysteresis loops appear when the radius ratio is not too small. The results 
presented here are in agreement with both the published experimental evidence and with 
theoretical work on the bifurcations in this flow. 

PROBLEM FORMULATION 

Consider a porous layer bounded by two horizontal concentric cylinders of radii Ri and Ro 
which are held at the constant temperatures Ti and To respectively with Ti >To (see Figure 1). 
The saturated porous medium is considered as a fictitious isotropic fluid with heat capacity 
(ρc)e=ε(ρc)f +(1 —ε)(ρc)s and an effective thermal conductivity λe. The physical properties of the 
medium, evaluated at the average temperature Tm = (Ti+To)/2 are considered constant except 
for the density variation with temperature in the buoyancy terms (Boussinesq approximation). 
The conservation of momentum is assumed to be given by Darcy's law. 

With these assumptions, the governing dimensionless equations are17: 
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The dimensionless stream function ψ is defined as: 

so that the continuity equation is automatically satisfied. The only dimensionless number 
appearing above is the Rayleigh number defined as follows: 

where a is the coefficient of thermal expansion, k is the permeability of the porous medium and 
g is the gravitational acceleration. Assuming flow symmetry about the vertical centre-line, the 
boundary conditions in dimensionless form are: 

T =1, ψ = 0 for r = 1 
T = 0, ψ = 0 for r = R (5) 

ψ = 0 for θ = 0 and θ = π 

where R = Ro/Ri is the radius ratio. The Nusselt number at the walls is a convenient way of 
measuring the increase in heat transfer due to convective effects. At steady state its mean value 
is given by: 

where 

are the local Nusselt numbers for the inner and outer cylinders respectively. 

NUMERICAL SOLUTION 

The above equations were solved by a second order, centred, finite difference scheme based on 
the implicit alternating method coupled with successive under-relaxation. A 101 x 101 regularly 
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spaced grid covering half the annual space was employed since symmetry about the vertical 
centreline was assumed. It has been implied13'14 that a coarse grid could be one of the reasons 
why some authors do not obtain multi-cellular flow regimes. In any case, the grid used here is 
finer than most used previously and, in any case, finer than grids already employed and which 
have shown the appearance of multi-cellular regimes. The finite difference expression for the 
first half step, implicit in the radial direction is written as: 

and the second half step, implicit in the 0 direction is: 

The tri-diagonal system of linear equations arising from each half step were solved using the 
Thomas algorithm. The elliptic stream function equation was solved iteratively using successive 
under-relaxation. The iterative scheme is: 

where ω is the under-relaxation parameter. A value of 0.65 resulted in the least amount of 
iterations for convergence. The local Nusselt numbers for the inner and outer cylinders were 
calculated using the following third order finite difference approximations: 

The integrals in (6) were calculated by the extended Simpson's rule and the final mean Nusselt 
number was taken as the average of the two calculated values. 

The calculations were performed on a RISC workstation and the CPU time required varied 
from about 15 minutes to several hours depending on the Rayleigh number. For each radius 
ratio, the search for a possible hysteresis behaviour was conducted by first determining the 
steady state solutions for progressively larger values of the Rayleigh number. Subsequently, 
calculations were then carried out in the opposite sense, i.e. for decreasing Rayleigh numbers. 
Each successive steady state calculation was run using the previously converged steady state 
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solution as the initial guess. For each radius ratio, the first run was always conducted for a very 
small Rayleigh number so that the steady state regime of pure conduction could be used as a 
good initial estimate. 

The calculations are assumed to converge when the dimensionless temperature difference 
between two successive time steps is less than a prescribed tolerance. All of the results presented 
here are for a maximum tolerance of 10-4. 

The grid size was varied in order to test the validity of our calculations. In 1976, Caltagirone12 

had used a 49 x 49 grid for this problem and had not been able to capture the counter-rotating 
cell in the top part of the layer. The grid size was first increased from 71 x 71 to 101 x 101, this 
corresponds approximately to 5000 and 104 grid points. The results obtained using the 101 x 101 
gave consistent results in all cases. The size of the grid employed in the calculations was also 
increased to 121 x 121 and sample calculations for Raleigh numbers of 100 and 200 and a radius 
ratio of 2 were performed. The difference in the calculated Nusselt number was not greater than 
0.5%, this result (and the discussion in the next section) leads us to believe that the results 
presented here are grid independent. 

RESULTS AND DISCUSSION 

The calculations were first performed for a radius ratio of 2, a case for which experimental results 
are reported in the literature. The mean Nusselt number as a function of the Rayleigh number 
is shown in Figure 2, a closed hysteresis loop is seen to occur. 

As the Rayleigh number is increased, the mean Nusselt number increases gradually along the 
lower branch and, at Ra = 110, the flow changes from a two to a four cell regime with an abrupt 
rise in the curve slope. If the Rayleigh number is then slowly decreased past the loop's upper 
limit, the mean Nusselt number follows the upper path and meets the other curve at Ra = 67. 
Here, the stream-lines change from four to two cells. Within the limits of the loop, both a two 
and a four cell flow regime are possible depending on past conditions, a typical characteristic 
of systems with a hysteresis behaviour. Isotherms and stream-lines representative of both these 
regimens ar shown in Figure 3 for Ra = 100 and Ra = 140 respectively. The fluid in each main 
cell moves upwards along the inner cylinder since it warms up in contact with the hot surface, 
it then falls along the colder outer surface. 
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The sudden rise in is mainly a consequence of more efficient fluid mixing due to the 
additional counter-rotating cells that appear in the upper part of the layer. It has been shown 
that the regime of pure conduction can only exist if the horizontal component of the temperature 
gradient is identically zero in the whole domain and if the vertical component is less than a 
certain limit. Thus, for this geometry, there is always fluid movement even for very small Rayleigh 
numbers. 

The results given above agree well with those obtained by Caltagirone12. The thermal field 
in his experiments was visualized using the Christiansen effect, the Nusselt number was obtained 
with the aid of several thermocouples inserted in the porous layer. For Rayleigh numbers below 
65 ± 4, he observed the expected steady two-cell, two-dimensional regime. At higher Rayleigh 
numbers, he observed three dimensional effects on top of the two dimensional motion in the 



NATURAL CONVECTION IN POROUS CYLINDRICAL ANNULI 9 

lower part of the annual region. The experimental Nusselt numbers are compared with our 
calculated values in Figure 4, the numerical values of Caltagirone12 with a 49 x 49 grid are also 
included. The lower limit of the hysteresis loop is in excellent agreement with the observed 
transitional Rayleigh number. As expected, the upper branch is closer to the experimental results 
because the instabilities, visible for Rayleigh numbers within the loop's limits, are better described 
by the four cell pattern. At higher Rayleigh numbers, the experimental Nusselt numbers are all 
located above the calculated values, implying that there is a significant heat transfer increase 
due to the three dimensional effects developed over the length of the cylinders. The numerical 
values of Reference 12 are in all cases below the ones obtained here since the grid is too coarse 
to reproduce the four cell regime. 

When the same system of equations has been solved using the Galerkin method9,18, three 
different regimes have been obtained for a radius ratio of 2 and a Rayleigh number of 200. The 
experiments of Caltagirone where the thermal field was visualized using the Christiansen effect 
have been reproduced18 and only the flow regimes described here were obtained experimentally. 
Furthermore, the description of the experimental results given in Reference 18 clearly indicates 
that a closed hysteresis loop was observed during a run where the Rayleigh number was first 
increased and then decreased. 

The influence of the radius ratio on these phenomena was investigated by considering different 
values of R. For R = 2.5, the loop expands and is located between Ra = 60 and Ra = 127 as shown 
in Figure 5. For R = 1.8, the loop narrows considerably and extends from Ra = 78 to Ra = 90 as 
shown in Figure 6. In both cases, the transition is from a two cell to a four cell flow regime. 

If the radius ratio is further decreased, the hysteresis loop disappears completely. For R = 1.5 
and R = 1.2 the transitional Rayleigh numbers for the appearance of a four cell regime are 
Ra = 102 and Ra = 235 respectively. The latter value is somewhat lower than the one reported 
by Arnold et al.14. This is explained by the fact that our transitional Rayleigh numbers are based 
on a search for a sign change of the stream function, a more precise method than a simple 
visualization of the stream line plot. For R = 1.2, the mean Nusselt number as a function of Ra 
is shown in Figure 7. For this value of R, the calculations were carried out up to Ra —1400 and 
no hysteresis behaviour was encountered. A smooth transition between flow regimes in this same 
geometry and for small values of the radius ratio has been reported by Himasekhar and Bau19 

who studied the bifurcations using perturbation techniques. 
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A four cell regime appears for Ra = 235 and a further increase of Ra results in the appearance 
of a six cell flow pattern for 280 < Ra < 290. The additional cells are generated between the two 
existing ones and rotates in the sense of the main cell creating a zone of shear between them. 
An eight cell regime appears at 340 < Ra < 350 but a further increase of the Rayleigh number 
does not lead to the formation of additional cells. The new cell appears between the two cells 
that rotate in the same sense thus eliminating the zone of shear between them. Isotherms and 
stream lines representative of both the six cell and the eight cell regimes are shown in Figure 8 
for Ra = 320 and Ra = 800 respectively. 
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The numerical work of Fant et al.10 for a thin annual layer filled with air (Pr = 0.706) shows 
a similar hysteresis behaviour, i.e. a closed loop with an abrupt change in the mean Nusselt 
number when the Rayleigh number is slowly increased past its transitional value. For R = 1.2, 
the hysteresis loop extends from Ra =2.85 x 105 to Ra = 3.51 x 105 and, in tis range both a two 
cell and a four cell regime can be obtained. For a narrower gap spacing (R = 1.1) the loop is 
located between 2.57 x 106 < Ra < 2.84 x106, but the transition is now from 2 to 6 cells. The 
results for both the fluid and a porous layer imply that reducing the value of R increases the 
flow stability. On the other hand, the observed expansion (for a fluid layer) of the hysteresis 
loop when the gap spacing is reduced contradicts our results for a porous layer. This is misleading 
since for the fluid layer the ratio Raupper/Ralower is closer to unity for R = 1.1 than for R = 1.2. 
The apparent condition comes from the fact that while the loop's lower limit shows the same 
trend for both cases, the upper limit decreases for a porous layer but increases for the fluid layer 
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as the radius ratio decreases. This suggests that for a fluid layer, the loop will completely disappear 
only in the limit R→1. 

CONCLUSIONS 

Natural convection in a porous medium between two horizontal concentric cylinders has been 
studied numerically by solving the two-dimensional Darcy-Boussinesq equations on a very fine 
grid. For very small radius ratios and on increasing the Rayleigh number, the steady state 
regimes yield successively 2, 4, 5 and 8 cells without exhibiting a hysteresis loop. For radius 
ratios above 1.7 approximately, the relationship between the Nusselt and Rayleigh numbers 
exhibits a closed hysteresis loop associated with the transition from a two to a four cell flow 
pattern. This information has been summarized in Figure 9. 
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